Kintematics Tutorial for A Level Mechanics - v = u + at; s= ut + 1/2 at^2; v^2 = u^2 + 2as; SUVAT (2024)

  1. Home
  2. Mathematics

Mathematics

In this tutorial, you will learn the following:

  • Deriving the equations of kinematics - equations of motion from scratch
  • v = u + at; s = ut + 1/2 at²; v² = u² + 2as
  • Worked examples covering the three equations
  • Extra harder questions for practice - with answers
  • An interactive applet to practise distance/time, velocity/time and acceleration/time graphs
  • Links to more Applied Maths tutorials on the site
  • A free worksheet with problems to practise resultant of system of forces - answers given

Kinematics - Equations of Motion

Kintematics Tutorial for A Level Mechanics - v = u + at; s= ut + 1/2 at^2; v^2 = u^2 + 2as; SUVAT (1)

Kintematics Tutorial for A Level Mechanics - v = u + at; s= ut + 1/2 at^2; v^2 = u^2 + 2as; SUVAT (2)

Suppose an object starts moving at u and gains an acceleration of a. After time t, it gets a speed v after travelling a distance of s. The graph shows this data on a velocity-time grid.

a = (v - u) / t => v - u = at

v = u + at

s = ut + 1/2(v - u) t
s = ut + 1/2 (at) t
s = ut + 1/2 at2

s = ut + 1/2 at2

v2 = (u + at)2
v2 =u2 + 2uat + a2t2
v2 = u2 + 2a (ut + 1/2 at2)
v2 = u2 + 2as

v2 = u2 + 2as

You can learn the relationship between the displacement-time, velocity-time and acceleration-time graphs with the following interactive applet. Just move the slider - the time - and see the corresponding change in displacement, velocity and acceleration.

E.g.1

An object starts from rest and moves with an acceleration 2 ms-2. Find its speed after 5 seconds and distance travelled.
u = 0, t = 5s, a = 2
v = 0 + 2 x 5
v = 10 ms-1
s = ut + 1/2 at2
s = 0 + 1/2 x 2 x 25
s = 25m.

E.g.2

An object starts moving at 10 ms-1 and gains an acceleration of 2 ms-2. Find its speed after 5 seconds and the distance travelled.
u = 10, a = 2, t = 5
v = 10 + 2 x 5
v = 20 ms-1s = ut + 1/2 at2
s = 10x5 + 1/2 x 2 x 25
s = 75m.

E.g.3

An object start moving at 20 ms-1 and increases its speed to 40ms-1 in 5 seconds. Find its acceleration and the distance travelled during this time.
v = 40, u = 20, t = 5
40 = 20 + 5a
5a = 20
a = 4 ms-2
s = 20 x 5 + 1/2 x 4 x 25
s = 100 + 50
s = 150 m

E.g.4

An object starts moving at 20ms-1 and reduces speed to 10 ms-1 in 2 seconds. Find its deceleration and the distance travelled. How far further will it move before coming to a halt?
u = 20, v = 10, t = 2,
10 = 20 + 2a
2a = -10
a = -5 ms-2
s = 20 x 2 - 1/2 x 5 x 4
s = 40 - 10
s = 30 m
When it stops,
v = 0, u = 10, a = -5
0 = 100 + 2 x -5 x s
10s = 100
s = 10 m

E.g.5

An object start moving at 10 ms-1 with an acceleration 2ms-2. Calculated the distance travelled by it during the third second.
u = 10, a = 2, t = 2
s = 10 x 2 + 1/2 x 2 x 4
s = 20 + 4
s = 24 m
u = 10, a = 2, t = 3
s = 10 x 3 + 1/2 x 2 x 9
s = 30 + 9
s = 39 m
Distance travelled during the third second = 39 - 24 = 15m.

E.g.6

A ball is thrown upwards at 20 ms-1. Find the time taken by it before reaching a height of 15 m. Assume g = 10 ms-2. Hence account for the answers.
u = 20, a = -10 s = 15
15 = 20t - 1/2 x 10 x t2
5t2 - 20t + 15 = 0
t2 - 4t + 3 = 0
(t - 3)(t-1) = 0
t = 3 or t = 1
There are two possible values for the time - both acceptable on account of being positive;
The object can be at the height of 15m on two occasions - while going up and coming down.

E.g.7

The height of a tower is 20m. A ball is thrown up at 20 m/s from the tower. How long will the ball take to hit the ground? Assume g=10ms-2.
In this case, when the ball hits the ground, the displacement is -20m.
s = -20, u = 20 a = -10 t = ?
s = ut + 1/2 at2
-20 = 20*t - 1/2 10 x t2
-20 = 20t - 5t2
t2 -4t -4 = 0
t = 4.8s or t = -0.83s
Since time cannot be negative, t=4.8s.

E.g.8

A balloon has been ascending at a constant speed of 20m/s. When it reaches a height, 40m, an iron nails falls off the balloon. How long will it take before the nail hits the ground, assuming g=10ms-2.? What are the assumptions that you make?
Since the balloon has been ascending at 20m/s, when the nail was dropped, the speed of the nail is also 20m/s. Afterwards, the nail moves under gravity, upwards until it stops and then falls back again.
So, the displacement of the nail with respect to the ground is -40m.
s = -40, u = 40 a = -10 t = ?
s = ut + 1/2 at2
-40 = 20*t - 1/2 10 x t2
-40 = 20t - 5t2
t2 -4t -8 = 0
t = 5.46s or t = -1.46s
Since time cannot be negative, t= 5.46s.
Air resistance is ignored during the calculations.

E.g.9

A car is moving at a constant acceleration, passing three towns A, B, C along the way. The distance between A and C is 200 km. It passes the three towns at t = 0, t = 4 and t = 10 seconds respectively. If the velocity of the car when it passes town A is 10km/s, find the acceleration and the distance BC.
A--->B
u = 10, a = ? t = 4, s = ?
s = 10 x 4 + 1/2 x a x 16
s = 40 + 8a 1
A--->C
u = 10, a = ? t = 10, s = 200
200 = 10 x 10 + 1/2 x a x 100
50a = 100
a = 2ms-2
Sub in 1
s = 40 + 8x 2
s = 56km.
So, distance between B and C is 200 - 56 = 144km.

E.g.10

A man runs past three poles, P, Q and R, at 20m/s, 12m/s and 8m/s respectively. Show that PQ:QR = 16: 5.
P--->Q
s = sPQ u = 20 v = 12
v2 = u2 + 2as
144 = 400 + 2asPQ
-256 = 2aspq 1
Q--->R
s = sQR u = 12 v = 8
v2 = u2 + 2as
64 = 144 + 2asQR
-80 = 2asPQ 2
1 / 2
sPQ / sQR = 144/80 = 16/5
sPQ : sQR = 16 : 5

E.g.11

An ant is moving with a constant acceleration. It has been observed that it travels a distance of 720mm and 960mm respectively during the eleventh and fifteenth seconds respectively. Find the initial velocity and the acceleration. Hence find the distance travelled by the ant after 20 seconds as well.
0---1---2----------------------------10-720mm-11----------------14-960mm-15------20<
Let the initial velocity and acceleration be v and a respectively.
s = ut + 1/2 at2
So, s10 = 10u + 1/2 a* 100 = 10u + 50a 1
s11 = 11u + 1/2 a* 121 = 10u + 60.5a 2
2 - 1 => 720 = u + 10.5a 3
In the same way,
So, s14 = 14u + 1/2 a* 196 = 14u + 98a 4
s15 = 15u + 1/2 a* 225 = 14u + 112.5a 5
5 - 4 => 960 = u + 14.5a 6
6 - 3 => 240 = 4a => a = 60 mm/s2.
Sub in 3 => 720 = u + 10.5 x 60
u = 90 mm/s.
s20 = 20x90 + 1/2x60x 400 = 1800 + 12000 = 13800mm.

E.g.12

Assuming that the acceleration due to gravity on the Earth is 9.6 ms-2, find the height reached by an object, projected vertically upwards on the Moon at 16 m/s. The gravity on the Moon is 1/6 th of that on the Earth.
v2 = u2 + 2as
0 = 256 - 2 x 1.6 x s
s = 80m.

Ad:The author's fully interactive tutorial on differentiation

Motion with varying acceleration

As you have already seen, in every single above example, the object/s in question was/were moving at a constant acceleration. If the acceleration changes, the equations of motion become just redundant. So, we have to use differentiation in order to deal with problems involving varying acceleration.

E.g.1

The displacement of an object varies with time as t3/3 - 2t2 + 3t.

  1. Find its velocity and acceleration in terms of t.
  2. Find the initial velocity.
  3. Find the velocity when t = 2.
  4. Find the acceleration when t = 4.
  5. When does it change the direction of its velocity?
  6. When does it have zero acceleration?
  1. v = ds/dt = t2 -4t + 3
    t = 0 => v = 3 m/s
  2. s = t3/3 - 2t2 + 3t
    v = ds/dt = t2 -4t + 3
    a = dv/dt = 2t -4
  3. v = t2 -4t + 3
    t = 2 => v = -1 m/s
  4. a = dv/dt = 2t -4
    t = 4 => a = 4 ms-2
  5. It changes velocity when t = 1 and t = 3 - velocity changes from positive to negative and vice versa.
  6. a = 2t - 4
    a = 0 => t = 2s.

E.g.2

An object moves along the x-axis at a velocity, v = 12t + t2/3. The distance from the origin, O, when time = t is x. Find its acceleration, when t = 3s. If x = -10, when t = 0, derive an expression for the displacement. Hence find the displacement when t = 4s.

  1. a = dv/dt = 12 + 2t/3
    t = 3 => a = 14 ms-2
  2. s = ∫v dt
    = 12t2/2 + t3/9 + c
    = 6t2 + t3/9 + c
    t = 0, s = -10;
    -10 = c
    s = 6t2 + t3/9 - 10
    t = 4 => s = 96 + 64/9 - 10
    s = 93.1 m.

Recommended Book for new A Level Maths

This is good workbook for both teachers and students alike: teachers can set homework from this book; students can learn from the worked examples that are well-structured. Since maths revision is practice-centred, this book offers a good resource with plenty of questions for that purpose.

Kintematics Tutorial for A Level Mechanics - v = u + at; s= ut + 1/2 at^2; v^2 = u^2 + 2as; SUVAT (3)Kintematics Tutorial for A Level Mechanics - v = u + at; s= ut + 1/2 at^2; v^2 = u^2 + 2as; SUVAT (4)

Download Free Worksheet on Resultant Forces

Questions for Practice

Please work out the following questions to complement what you have just learnt.


  1. The speed of a car goes down from 40 ms-1 to 35 ms-1 in 1/2 seconds. Find its deceleration. How far will it move further before stopping?
  2. A car starts from rest and moves with an acceleration 4ms-2. Find its speed after 6 seconds and the distance travelled during that time.
  3. A stone is dropped into a well. Its splash could be heard after 4.25 seconds since its drop. Calculate the depth of the well, if the speed of sound is 320 ms-1 and g = 10 ms-2.
  4. A stone is dropped from the top of a tower. It goes through 16/25th of the total height during the last second. Find the height of the tower and the time taken for the fall. g = 10ms-2
  5. A balloon is ascending at a constant speed of 20 ms-1. An object falls from it after 4 s in motion. Find the distance travelled by the object before it hits the ground. g = 10 ms-2.
  6. A vehicle is moving at a constant acceleration. It passes the town P at 66 kmh-1 and town Q at 74kmh-1, a distance of 40 km between the two. Find the acceleration. Hence, find the time taken by the vehicle to move past the first kilometre post, after passing P.
  7. A car accelerates at 4ms-2, starting from rest, for 5 seconds, then maintains the speed for 10 seconds, and eventually slows down to a halt in 4 seconds. Find the deceleration during thefinal stage and the total distance covered. What is the average speed of the car?
  8. A car starts from rest and moves with an acceleration of 4ms-2 for 20 seconds. It then comes to a halt in the next 5 seconds. Find the deceleration of the car and the distance covered duringthe first 22 seconds.
  9. A car has been moving at a constant speed of 20ms-1. A lorry starting from rest moves with an acceleration of 4ms-2. How long will the lorry take before it gets the same speedof the car? How far have both gone by then? Find the time taken by the lorry to catch with the car and the distance travelled by then as well.
  10. An object slows down its speed from 20ms-1 to 10ms-1 in 4 seconds. Find its deceleration and the distanced travelled. It then comes to a halt in 5 seconds at a different deceleration. Find the totaldistance travelled by the object.
  11. A bucket is lowered into a well at a constant acceleration of 2 ms-2. After 10 seconds, a ball is dropped into the bucket from rest, while the latter was still in motion. How long will the ball take to fall into the bucket?
  12. A stone is projected vertically at a speed, which is just enough for it to reach a height, 90m. Two seconds later, a second stone is projected upwards in the same way. When will the two stones meet up? Find the position at which they meet up too. Assume g = 9.6 ms-2.

Answers

Move the mouse over, just below this, to see the answers:

  1. -10, 61.25
  2. -24, 72
  3. 80
  4. 125,5
  5. 120, 6.47
  6. 14, 0.02
  7. 5, 190, 13.6
  8. 16, 952
  9. 5, 100, 50, 10, 200
  10. 2.5, 120, 145
  11. 3.3
  12. 3.5, 25.2

Now that you have read this tutorial, you will find the following tutorials very helpful too:

    maths
  • Pulleys
  • Projectile Motion - interactive
  • Linear Momentum
Kintematics Tutorial for A Level Mechanics - v = u + at; s= ut + 1/2 at^2; v^2 = u^2 + 2as; SUVAT (2024)

FAQs

What is the equation for V 2 in kinematics? ›

There are four basic kinematics equations:

v = v 0 + a t. Δ x = ( v + v 0 2 ) t. Δ x = v 0 t + 1 2 a t 2. v 2 = v o 2 + 2 a Δ x.

What is V and U in kinematics? ›

The equation we have that includes u , v , a and t is v=u+at. However, this needs rearranging to make u the subject of the equation. This gives u=v−at. On substitution of the values we know we obtain u=v−at,=40−(9.8×4.5),=0.31ms−1.

What does the s in s ut 1 ⁄ 2 at2 represent? ›

S stands for displacement in t seconds and a stands for acceleration and u stands for initial velocity. When an object falls from a height, the distance s (metres), it travels in time t (seconds) is given by the equation s = 4.9t2. Is the distance travelled proportional to time?

What is the V in v2 u2 2as? ›

v2 = u2 + 2as is the third equation of motion. We already remember that distance equals average velocity multiplied by time. 2as = v2 – u2 or v2 = u2 + 2as. The link between the particle's final velocity v, starting velocity u, constant speed a, with displacement S is the 3rd equation of motion.

What is the 2 equation of motion? ›

The second equation of motion gives the position-time relation, i.e. s = ut + (1/2) at2. Here, v is the final velocity, u is the initial velocity, a is the acceleration and t is the time.

What is the u by V formula? ›

FAQs on Integration of UV Formula

The formula of integration of uv is ∫u v = u ∫v dx - ∫(u' ∫v dx ) dx. The formula of integration of uv helps us evaluate the integrals of the product of two functions. Hence it is also known as the product rule of integration.

What is V and u in equation of motion? ›

where u = initial velocity, v = final velocity, a = acceleration and t = time period.

What are the four kinematic equations? ›

Rotational Motion
RotationalTranslational
Θ = ω ¯ tx = v ¯ t
ω = ω 0 + α tv = v 0 + a t
Θ = ω 0 t + 1 2 α t 2x = v 0 t + 1 2 a t 2
ω 2 = ω 0 2 + 2 α Θv 2 = v 0 2 + 2 a x

Is kinematics easy or hard? ›

kinematics is the easiest part of physics, you have to just understand the concepts really well ; few of the important concepts are : frames of reference and relative motion. equations of motion with uniform acceleration. using graphs for kinematical analysis of the problem.

What are the three kinematic equations? ›

The three equations are,
  • v = u + at.
  • v² = u² + 2as.
  • s = ut + ½at²

What is an example of kinematics? ›

Kinematics is used in everyday life for explaining motion without reference to the forces involved. Some examples of kinematics include measuring the distance of a walking trail, understanding how we can a car's velocity to calculate its acceleration, and seeing the effects of gravity on falling objects.

When to use s ut 1/2 at 2? ›

s=ut+1/2at^2 : this equation is used to find out the distance traveled by a particle in time t when its initial velocity is u (i. e. att=0 , velocity = u ) and is moving with uniform acceleration f .

What does the u stand for in physics? ›

The letter u is used in physics to denote the sign of potential energy, as well as the initial velocity and the object distance in ray optics.

How to derive s ut 0.5 at 2? ›

If we let s be the displacement, then the change in displacement is s, and the change in time is t. Therefore, velocity v = s / t. Substituting the first equation of motion into this gives s = ut + 0.5at^2.

What is V squared in kinematics? ›

Equation 3: v2=u2+2as

This equation relates the final velocity (v) of an object to its initial velocity (u), displacement (s), and acceleration (a). It states that the final velocity of an object squared is equal to the initial velocity of an object squared plus twice the product of acceleration and displacement.

What is the formula for velocity 2? ›

Velocity Calculator v^2 = u^2 + 2as.

What is v2 in kinetic energy formula? ›

Kinetic energy is directly proportional to the mass of the object and to the square of its velocity: K.E. = 1/2 m v2. If the mass has units of kilograms and the velocity of meters per second, the kinetic energy has units of kilograms-meters squared per second squared.

What is the formula for v2 in physics? ›

Another equation of motion states v2 = u2 + 2as. As before, v = final speed, u = initial speed, a = acceleration, s = distance travelled. Suppose a stone is dropped from a cliff which is 100m high.

References

Top Articles
Obituary | Willard E. Swanke of Rhame, North Dakota | Krebsbach Funeral Service
Norma A. Wolfgram Obituary 2018 - Ballard-Sunder Funeral & Cremation
Umbc Baseball Camp
Po Box 7250 Sioux Falls Sd
Minooka Channahon Patch
Arkansas Gazette Sudoku
Professor Qwertyson
15 Types of Pancake Recipes from Across the Globe | EUROSPAR NI
Farmers Branch Isd Calendar
Meg 2: The Trench Showtimes Near Phoenix Theatres Laurel Park
Giovanna Ewbank Nua
Moe Gangat Age
Syracuse Jr High Home Page
Magicseaweed Capitola
Nhl Tankathon Mock Draft
Rugged Gentleman Barber Shop Martinsburg Wv
/Www.usps.com/International/Passports.htm
Titanic Soap2Day
Masterkyngmash
Yisd Home Access Center
How to Grow and Care for Four O'Clock Plants
[PDF] NAVY RESERVE PERSONNEL MANUAL - Free Download PDF
Marion City Wide Garage Sale 2023
Olivia Maeday
480-467-2273
Local Collector Buying Old Motorcycles Z1 KZ900 KZ 900 KZ1000 Kawasaki - wanted - by dealer - sale - craigslist
Watertown Ford Quick Lane
Ehome America Coupon Code
'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
Puretalkusa.com/Amac
Reli Stocktwits
Google Jobs Denver
Ny Post Front Page Cover Today
Daily Jail Count - Harrison County Sheriff's Office - Mississippi
Academic important dates - University of Victoria
Craigslist Putnam Valley Ny
Wo ein Pfand ist, ist auch Einweg
Why I’m Joining Flipboard
Nsav Investorshub
Fetus Munchers 1 & 2
Mugshots Journal Star
Hovia reveals top 4 feel-good wallpaper trends for 2024
Lucyave Boutique Reviews
Top 40 Minecraft mods to enhance your gaming experience
Streameast Io Soccer
Mountainstar Mychart Login
8 4 Study Guide And Intervention Trigonometry
Dineren en overnachten in Boutique Hotel The Church in Arnhem - Priya Loves Food & Travel
10 Bedroom Airbnb Kissimmee Fl
Game Like Tales Of Androgyny
How to Choose Where to Study Abroad
La Fitness Oxford Valley Class Schedule
Latest Posts
Article information

Author: Msgr. Benton Quitzon

Last Updated:

Views: 5736

Rating: 4.2 / 5 (63 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Msgr. Benton Quitzon

Birthday: 2001-08-13

Address: 96487 Kris Cliff, Teresiafurt, WI 95201

Phone: +9418513585781

Job: Senior Designer

Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.